Statistical relational learning

Statistical relational learning (SRL) is a subdiscipline of artificial intelligence and machine learning that is concerned with domain models that exhibit both uncertainty (which can be dealt with using statistical methods) and complex, relational structure. Typically, the knowledge representation formalisms developed in SRL use (a subset of) first-order logic to describe relational properties of a domain in a general manner (universal quantification) and draw upon probabilistic graphical models (such as Bayesian networks or Markov networks) to model the uncertainty; some also build upon the methods of inductive logic programming. Significant contributions to the field have been made since the late 1990s.

##### field

##### known for

##### Wikipage disambiguates

##### Wikipage redirect

##### primaryTopic

Statistical relational learning

Statistical relational learning (SRL) is a subdiscipline of artificial intelligence and machine learning that is concerned with domain models that exhibit both uncertainty (which can be dealt with using statistical methods) and complex, relational structure. Typically, the knowledge representation formalisms developed in SRL use (a subset of) first-order logic to describe relational properties of a domain in a general manner (universal quantification) and draw upon probabilistic graphical models (such as Bayesian networks or Markov networks) to model the uncertainty; some also build upon the methods of inductive logic programming. Significant contributions to the field have been made since the late 1990s.

##### has abstract

Statistical relational learnin ...... which models are represented).

@en

##### Wikipage page ID

19.667.111

##### Wikipage revision ID

704.830.540

##### comment

Statistical relational learnin ...... een made since the late 1990s.

@en

##### label

Statistical relational learning

@en