Antimatter

In particle physics, antimatter is a material composed of antiparticles, which have the same mass as particles of ordinary matter but opposite charges, as well as other particle properties such as lepton and baryon numbers. Collisions between particles and antiparticles lead to the annihilation of both, giving rise to variable proportions of intense photons (gamma rays), neutrinos, and less massive particle–antiparticle pairs. The total consequence of annihilation is a release of energy available for work, proportional to the total matter and antimatter mass, in accord with the mass–energy equivalence equation, E = mc2.

Antimatter

In particle physics, antimatter is a material composed of antiparticles, which have the same mass as particles of ordinary matter but opposite charges, as well as other particle properties such as lepton and baryon numbers. Collisions between particles and antiparticles lead to the annihilation of both, giving rise to variable proportions of intense photons (gamma rays), neutrinos, and less massive particle–antiparticle pairs. The total consequence of annihilation is a release of energy available for work, proportional to the total matter and antimatter mass, in accord with the mass–energy equivalence equation, E = mc2.