Maxwell's equations

Maxwell's equations are a set of partial differential equations that, together with the Lorentz force law, form the foundation of classical electrodynamics, classical optics, and electric circuits. These areas of physics are the basis for all electric, optical and radio technologies like power generation, electric motors, wireless communication, cameras, televisions, computers etc. Maxwell's equations describe how electric and magnetic fields are generated by charges, currents and changes of each other. One important consequence of the equations is that fluctuating electric and magnetic fields can propagate at the speed of light, and this electromagnetic radiation manifests itself in manifold ways from radio waves to light and X- or γ-rays. The equations are named after the physicist and m

Maxwell's equations

Maxwell's equations are a set of partial differential equations that, together with the Lorentz force law, form the foundation of classical electrodynamics, classical optics, and electric circuits. These areas of physics are the basis for all electric, optical and radio technologies like power generation, electric motors, wireless communication, cameras, televisions, computers etc. Maxwell's equations describe how electric and magnetic fields are generated by charges, currents and changes of each other. One important consequence of the equations is that fluctuating electric and magnetic fields can propagate at the speed of light, and this electromagnetic radiation manifests itself in manifold ways from radio waves to light and X- or γ-rays. The equations are named after the physicist and m