Outer space

Outer space, deep space, or just space, is the void that exists between celestial bodies, including the Earth. It is not completely empty, but consists of a hard vacuum containing a low density of particles, predominantly a plasma of hydrogen and helium as well as electromagnetic radiation, magnetic fields, neutrinos, dust and cosmic rays. The baseline temperature, as set by the background radiation from the Big Bang, is 2.7 kelvins (K) (−270.45 °C; −454.81 °F). Plasma with a number density of less than one hydrogen atom per cubic metre and a temperature of millions of kelvins in the space between galaxies accounts for most of the baryonic (ordinary) matter in outer space; local concentrations have condensed into stars and galaxies. In most galaxies, observations provide evidence that 90%

Outer space

Outer space, deep space, or just space, is the void that exists between celestial bodies, including the Earth. It is not completely empty, but consists of a hard vacuum containing a low density of particles, predominantly a plasma of hydrogen and helium as well as electromagnetic radiation, magnetic fields, neutrinos, dust and cosmic rays. The baseline temperature, as set by the background radiation from the Big Bang, is 2.7 kelvins (K) (−270.45 °C; −454.81 °F). Plasma with a number density of less than one hydrogen atom per cubic metre and a temperature of millions of kelvins in the space between galaxies accounts for most of the baryonic (ordinary) matter in outer space; local concentrations have condensed into stars and galaxies. In most galaxies, observations provide evidence that 90%