Cantor–Zassenhaus algorithm

In computational algebra, the Cantor–Zassenhaus algorithm is a method for factoring polynomials over finite fields (also called Galois fields). The algorithm consists mainly of exponentiation and polynomial GCD computations. It was invented by David G. Cantor and Hans Zassenhaus in 1981. It is arguably the dominant algorithm for solving the problem, having replaced the earlier Berlekamp's algorithm of 1967. It is currently implemented in many computer algebra systems.

Cantor–Zassenhaus algorithm

In computational algebra, the Cantor–Zassenhaus algorithm is a method for factoring polynomials over finite fields (also called Galois fields). The algorithm consists mainly of exponentiation and polynomial GCD computations. It was invented by David G. Cantor and Hans Zassenhaus in 1981. It is arguably the dominant algorithm for solving the problem, having replaced the earlier Berlekamp's algorithm of 1967. It is currently implemented in many computer algebra systems.