Closure operator

In mathematics, a closure operator on a set S is a function from the power set of S to itself that satisfies the following conditions for all sets Closure operators are determined by their closed sets, i.e., by the sets of the form cl(X), since the closure cl(X) of a set X is the smallest closed set containing X. Such families of "closed sets" are sometimes called closure systems or "Moore families", in honor of E. H. Moore who studied closure operators in his 1910 Introduction to a form of general analysis, whereas the concept of the closure of a subset originated in the work of Frigyes Riesz in connection with topological spaces. Though not formalized at the time, the idea of closure originated in the late 19th century with notable contributions by Ernst Schröder, Richard Dedekindand Ge

Closure operator

In mathematics, a closure operator on a set S is a function from the power set of S to itself that satisfies the following conditions for all sets Closure operators are determined by their closed sets, i.e., by the sets of the form cl(X), since the closure cl(X) of a set X is the smallest closed set containing X. Such families of "closed sets" are sometimes called closure systems or "Moore families", in honor of E. H. Moore who studied closure operators in his 1910 Introduction to a form of general analysis, whereas the concept of the closure of a subset originated in the work of Frigyes Riesz in connection with topological spaces. Though not formalized at the time, the idea of closure originated in the late 19th century with notable contributions by Ernst Schröder, Richard Dedekindand Ge