Differential forms on a Riemann surface

In mathematics, differential forms on a Riemann surface are an important special case of the general theory of differential forms on smooth manifolds, distinguished by the fact that the conformal structure on the Riemann surface intrinsically defines a Hodge star operator on 1-forms (or differentials) without specifying a Riemannian metric. This allows the use of Hilbert space techniques for studying function theory on the Riemann surface and in particular for the construction of harmonic and holomorphic differentials with prescribed singularities. These methods were first used by in his variational approach to the Dirichlet principle, making rigorous the arguments proposed by Riemann. Later found a direct approach using his method of orthogonal projection, a precursor of the modern theo

Differential forms on a Riemann surface

In mathematics, differential forms on a Riemann surface are an important special case of the general theory of differential forms on smooth manifolds, distinguished by the fact that the conformal structure on the Riemann surface intrinsically defines a Hodge star operator on 1-forms (or differentials) without specifying a Riemannian metric. This allows the use of Hilbert space techniques for studying function theory on the Riemann surface and in particular for the construction of harmonic and holomorphic differentials with prescribed singularities. These methods were first used by in his variational approach to the Dirichlet principle, making rigorous the arguments proposed by Riemann. Later found a direct approach using his method of orthogonal projection, a precursor of the modern theo