Physical unclonable function

A physical unclonable function (sometimes also called physically unclonable function, which refers to a weaker security metric than a physical unclonable function), or PUF, is a physical object that for a given input and conditions (challenge), provides a physically defined "digital fingerprint" output (response) that serves as a unique identifier, most often for a semiconductor device such as a microprocessor. PUFs are most often based on unique physical variations which occur naturally during semiconductor manufacturing. A PUF is a physical entity embodied in a physical structure. Today, PUFs are usually implemented in integrated circuits and are typically used in applications with high security requirements, more specifically cryptography.

Physical unclonable function

A physical unclonable function (sometimes also called physically unclonable function, which refers to a weaker security metric than a physical unclonable function), or PUF, is a physical object that for a given input and conditions (challenge), provides a physically defined "digital fingerprint" output (response) that serves as a unique identifier, most often for a semiconductor device such as a microprocessor. PUFs are most often based on unique physical variations which occur naturally during semiconductor manufacturing. A PUF is a physical entity embodied in a physical structure. Today, PUFs are usually implemented in integrated circuits and are typically used in applications with high security requirements, more specifically cryptography.