Bony–Brezis theorem

In mathematics, the Bony–Brezis theorem, due to the French mathematicians Jean-Michel Bony and Haïm Brezis, gives necessary and sufficient conditions for a closed subset of a manifold to be invariant under the flow defined by a vector field, namely at each point of the closed set the vector field must have non-positive inner product with any exterior normal vector to the set. A vector is an exterior normal at a point of the closed set if there is a real-valued continuously differentiable function maximized locally at the point with that vector as its derivative at the point. If the closed subset is a smooth submanifold with boundary, the condition states that the vector field should not point outside the subset at boundary points. The generalization to non-smooth subsets is important in th

Bony–Brezis theorem

In mathematics, the Bony–Brezis theorem, due to the French mathematicians Jean-Michel Bony and Haïm Brezis, gives necessary and sufficient conditions for a closed subset of a manifold to be invariant under the flow defined by a vector field, namely at each point of the closed set the vector field must have non-positive inner product with any exterior normal vector to the set. A vector is an exterior normal at a point of the closed set if there is a real-valued continuously differentiable function maximized locally at the point with that vector as its derivative at the point. If the closed subset is a smooth submanifold with boundary, the condition states that the vector field should not point outside the subset at boundary points. The generalization to non-smooth subsets is important in th