Branching factor

For example, in chess, if a "node" is considered to be a legal position, the average branching factor has been said to be about 35. This means that, on average, a player has about 35 legal moves at his disposal at each turn. By comparison, the branching factor for the game Go is 250. Higher branching factors make algorithms that follow every branch at every node, such as exhaustive brute force searches, computationally more expensive due to the exponentially increasing number of nodes, leading to combinatorial explosion.

Branching factor

For example, in chess, if a "node" is considered to be a legal position, the average branching factor has been said to be about 35. This means that, on average, a player has about 35 legal moves at his disposal at each turn. By comparison, the branching factor for the game Go is 250. Higher branching factors make algorithms that follow every branch at every node, such as exhaustive brute force searches, computationally more expensive due to the exponentially increasing number of nodes, leading to combinatorial explosion.