Chirality (physics)

A chiral phenomenon is one that is not identical to its mirror image (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity. Invariance under parity by a Dirac fermion is called chiral symmetry. An experiment on the weak decay of cobalt-60 nuclei carried out by Chien-Shiung Wu and collaborators in 1957 demonstrated that parity is not a symmetry of the universe.

Chirality (physics)

A chiral phenomenon is one that is not identical to its mirror image (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity. Invariance under parity by a Dirac fermion is called chiral symmetry. An experiment on the weak decay of cobalt-60 nuclei carried out by Chien-Shiung Wu and collaborators in 1957 demonstrated that parity is not a symmetry of the universe.