Differentiation in Fréchet spaces

In mathematics, in particular in functional analysis and nonlinear analysis, it is possible to define the derivative of a function between two Fréchet spaces. This notion of differentiation is significantly weaker than the derivative in a Banach space. Nevertheless, it is the weakest notion of differentiation for which many of the familiar theorems from calculus hold. In particular, the chain rule is true. With some additional constraints on the Fréchet spaces and functions involved, there is an analog of the inverse function theorem called the Nash–Moser inverse function theorem, having wide applications in nonlinear analysis and differential geometry.

Differentiation in Fréchet spaces

In mathematics, in particular in functional analysis and nonlinear analysis, it is possible to define the derivative of a function between two Fréchet spaces. This notion of differentiation is significantly weaker than the derivative in a Banach space. Nevertheless, it is the weakest notion of differentiation for which many of the familiar theorems from calculus hold. In particular, the chain rule is true. With some additional constraints on the Fréchet spaces and functions involved, there is an analog of the inverse function theorem called the Nash–Moser inverse function theorem, having wide applications in nonlinear analysis and differential geometry.