ADAR

Double-stranded RNA-specific adenosine deaminase is an enzyme that in humans is encoded by the ADAR gene (which stands for adenosine deaminase acting on RNA). Adenosine deaminases acting on RNA (ADAR) are enzymes responsible for binding to double stranded RNA (dsRNA) and converting adenosine (A) to inosine (I) by deamination. ADAR protein is a RNA-binding protein, which functions in RNA-editing through post-transcriptional modification of mRNA transcripts by changing the nucleotide content of the RNA. The conversion from A to I in the RNA disrupt the normal A:U pairing which makes the RNA unstable. Inosine is structurally similar to guanine (G) which leads to I to cytosine (C) binding. Inosine typically mimicks guanosine during translation. Codon changes can arise from editing which may le

ADAR

Double-stranded RNA-specific adenosine deaminase is an enzyme that in humans is encoded by the ADAR gene (which stands for adenosine deaminase acting on RNA). Adenosine deaminases acting on RNA (ADAR) are enzymes responsible for binding to double stranded RNA (dsRNA) and converting adenosine (A) to inosine (I) by deamination. ADAR protein is a RNA-binding protein, which functions in RNA-editing through post-transcriptional modification of mRNA transcripts by changing the nucleotide content of the RNA. The conversion from A to I in the RNA disrupt the normal A:U pairing which makes the RNA unstable. Inosine is structurally similar to guanine (G) which leads to I to cytosine (C) binding. Inosine typically mimicks guanosine during translation. Codon changes can arise from editing which may le