Deterministic noise

In (supervised) machine learning, specifically when learning from data, there are situations when the data values cannot be modeled. This may arise if there are random fluctuations or measurement errors in the data which are not modeled, and can be appropriately called stochastic noise; or, when the phenomenon being modeled (or learned) is too complex, and so the data contains this added complexity that is not modeled. This added complexity in the data has been called deterministic noise. Though these two types of noise arise from different causes, their adverse effect on learning is similar. The overfitting occurs because the model attempts to fit the (stochastic or deterministic) noise (that part of the data that it cannot model) at the expense of fitting that part of the data which it c

Deterministic noise

In (supervised) machine learning, specifically when learning from data, there are situations when the data values cannot be modeled. This may arise if there are random fluctuations or measurement errors in the data which are not modeled, and can be appropriately called stochastic noise; or, when the phenomenon being modeled (or learned) is too complex, and so the data contains this added complexity that is not modeled. This added complexity in the data has been called deterministic noise. Though these two types of noise arise from different causes, their adverse effect on learning is similar. The overfitting occurs because the model attempts to fit the (stochastic or deterministic) noise (that part of the data that it cannot model) at the expense of fitting that part of the data which it c