Differentiable vector-valued functions from Euclidean space

In the mathematical discipline of functional analysis, it is possible to generalize the notion of derivative to arbitrary (i.e. infinite dimensional) topological vector spaces (TVSs) in multiple ways. But when the domain of a TVS-value function is a subset of finite-dimensional Euclidean space then the number of generalizations of the derivative is much more limited and derivatives are more well behaved. This article presents the theory of -times continuously differentiable functions on an open subset of Euclidean space , which is an important special case of differentiation between arbitrary TVSs. All vector spaces will be assumed to be over the field where is either the real numbers or the complex numbers

Differentiable vector-valued functions from Euclidean space

In the mathematical discipline of functional analysis, it is possible to generalize the notion of derivative to arbitrary (i.e. infinite dimensional) topological vector spaces (TVSs) in multiple ways. But when the domain of a TVS-value function is a subset of finite-dimensional Euclidean space then the number of generalizations of the derivative is much more limited and derivatives are more well behaved. This article presents the theory of -times continuously differentiable functions on an open subset of Euclidean space , which is an important special case of differentiation between arbitrary TVSs. All vector spaces will be assumed to be over the field where is either the real numbers or the complex numbers