G-parity

In particle physics, G-parity is a multiplicative quantum number that results from the generalization of C-parity to multiplets of particles. C-parity applies only to neutral systems; in the pion triplet, only π0 has C-parity. On the other hand, strong interaction does not see electrical charge, so it cannot distinguish amongst π+, π0 and π−. We can generalize the C-parity so it applies to all charge states of a given multiplet: where ηG = ±1 are the eigenvalues of G-parity. The G-parity operator is defined as (see Q, B, Y). In general where ηC is a C-parity eigenvalue, and I is the isospin. .

G-parity

In particle physics, G-parity is a multiplicative quantum number that results from the generalization of C-parity to multiplets of particles. C-parity applies only to neutral systems; in the pion triplet, only π0 has C-parity. On the other hand, strong interaction does not see electrical charge, so it cannot distinguish amongst π+, π0 and π−. We can generalize the C-parity so it applies to all charge states of a given multiplet: where ηG = ±1 are the eigenvalues of G-parity. The G-parity operator is defined as (see Q, B, Y). In general where ηC is a C-parity eigenvalue, and I is the isospin. .