Shock hardening

Shock hardening is a process used to strengthen metals and alloys, wherein a shock wave produces atomic-scale defects in the material's crystalline structure. As in cold work, these defects interfere with the normal processes by which metallic materials yield (plasticity), making materials stiffer, but more brittle. When compared to traditional cold work, such an extremely rapid process results in a different class of defect, producing a much harder material for a given change in shape. If the shock wave applies too great a force for too long, however, the rarefaction front that follows it can form voids in the material due to hydrostatic tension, weakening the material and often causing it to spall. Since voids nucleate at large defects, such as oxide inclusions and grain boundaries, high

Shock hardening

Shock hardening is a process used to strengthen metals and alloys, wherein a shock wave produces atomic-scale defects in the material's crystalline structure. As in cold work, these defects interfere with the normal processes by which metallic materials yield (plasticity), making materials stiffer, but more brittle. When compared to traditional cold work, such an extremely rapid process results in a different class of defect, producing a much harder material for a given change in shape. If the shock wave applies too great a force for too long, however, the rarefaction front that follows it can form voids in the material due to hydrostatic tension, weakening the material and often causing it to spall. Since voids nucleate at large defects, such as oxide inclusions and grain boundaries, high