Continuous adsorption-regeneration

Electrochemical regeneration of activated carbon adsorbents such as granular activated carbon present an alternative to thermal regeneration or land filling at the end of useful adsorbent life. Continuous adsorption-electrochemical regeneration encompasses the adsorption and regeneration steps, typically separated in the bulk of industrial processes due to long adsorption equilibrium times (ranging from hours to months), into one continuous system. This is possible using a non-porous, electrically conducting carbon derivative called Nyex. The non-porosity of Nyex allows it to achieve its full adsorptive capacity within a few minutes and its electrical conductivity allows it to form part of the electrode in an electrochemical cell. As a result of its properties Nyex can undergo quick adsorp

Continuous adsorption-regeneration

Electrochemical regeneration of activated carbon adsorbents such as granular activated carbon present an alternative to thermal regeneration or land filling at the end of useful adsorbent life. Continuous adsorption-electrochemical regeneration encompasses the adsorption and regeneration steps, typically separated in the bulk of industrial processes due to long adsorption equilibrium times (ranging from hours to months), into one continuous system. This is possible using a non-porous, electrically conducting carbon derivative called Nyex. The non-porosity of Nyex allows it to achieve its full adsorptive capacity within a few minutes and its electrical conductivity allows it to form part of the electrode in an electrochemical cell. As a result of its properties Nyex can undergo quick adsorp