Axiomatic theory of receptive fields

Receptive field profiles registered by cell recordings have shown that mammalian vision has developed receptive fields tuned to different sizes and orientations in the image domain as well as to different image velocities in space-time. Corresponding cell recordings in the auditory system has shown that mammals have developed receptive fields tuned to different frequencies as well as temporal transients. This article describes normative theories that have been developed to explain these properties of sensory receptive fields based on structural properties of the environment. Beyond theoretical explanation of biological phenomena, these theories can also be used for computational modelling of biological receptive fields and for building algorithms for artificial perception based on sensory

Axiomatic theory of receptive fields

Receptive field profiles registered by cell recordings have shown that mammalian vision has developed receptive fields tuned to different sizes and orientations in the image domain as well as to different image velocities in space-time. Corresponding cell recordings in the auditory system has shown that mammals have developed receptive fields tuned to different frequencies as well as temporal transients. This article describes normative theories that have been developed to explain these properties of sensory receptive fields based on structural properties of the environment. Beyond theoretical explanation of biological phenomena, these theories can also be used for computational modelling of biological receptive fields and for building algorithms for artificial perception based on sensory