Bell test experiments

Bell test experiments or Bell's inequality experiments are designed to demonstrate the real world existence of certain theoretical consequences of the phenomenon of entanglement in quantum mechanics which could not possibly occur according to a classical picture of the world, characterised by the notion of local realism. Under local realism, correlations between outcomes of different measurements performed on separated physical systems have to satisfy certain constraints, called Bell inequalities. John Bell derived the first inequality of this kind in his paper "On the Einstein-Podolsky-Rosen Paradox". Bell's Theorem states that the predictions of quantum mechanics, concerning correlations, being inconsistent with Bell's inequality, cannot be reproduced by any local hidden variable theory.

Bell test experiments

Bell test experiments or Bell's inequality experiments are designed to demonstrate the real world existence of certain theoretical consequences of the phenomenon of entanglement in quantum mechanics which could not possibly occur according to a classical picture of the world, characterised by the notion of local realism. Under local realism, correlations between outcomes of different measurements performed on separated physical systems have to satisfy certain constraints, called Bell inequalities. John Bell derived the first inequality of this kind in his paper "On the Einstein-Podolsky-Rosen Paradox". Bell's Theorem states that the predictions of quantum mechanics, concerning correlations, being inconsistent with Bell's inequality, cannot be reproduced by any local hidden variable theory.