Carbon nanotubes in interconnects

Carbon nanotubes (CNTs) can be thought of as rolled up single atomic layer graphite sheet to form a seamless cylinder. Depending on the direction on which they are rolled, CNTs can be semiconducting or metallic. Metallic carbon nanotubes have been identified as a possible interconnect material for the future technology generations and to replace copper (Cu) interconnects. Electron transport can go over long nanotube lengths, 1μm, enabling CNTs to carry very high currents (i.e. up to 109 Acm−2) with essentially no heating due to nearly 1D electronic structure.

Carbon nanotubes in interconnects

Carbon nanotubes (CNTs) can be thought of as rolled up single atomic layer graphite sheet to form a seamless cylinder. Depending on the direction on which they are rolled, CNTs can be semiconducting or metallic. Metallic carbon nanotubes have been identified as a possible interconnect material for the future technology generations and to replace copper (Cu) interconnects. Electron transport can go over long nanotube lengths, 1μm, enabling CNTs to carry very high currents (i.e. up to 109 Acm−2) with essentially no heating due to nearly 1D electronic structure.