Balinski's theorem

In polyhedral combinatorics, a branch of mathematics, Balinski's theorem is a statement about the graph-theoretic structure of three-dimensional polyhedra and higher-dimensional polytopes. It states that, if one forms an undirected graph from the vertices and edges of a convex d-dimensional polyhedron or polytope (its skeleton), then the resulting graph is at least d-vertex-connected: the removal of any d − 1 vertices leaves a connected subgraph. For instance, for a three-dimensional polyhedron, even if two of its vertices (together with their incident edges) are removed, for any pair of vertices there will still exist a path of vertices and edges connecting the pair.

Balinski's theorem

In polyhedral combinatorics, a branch of mathematics, Balinski's theorem is a statement about the graph-theoretic structure of three-dimensional polyhedra and higher-dimensional polytopes. It states that, if one forms an undirected graph from the vertices and edges of a convex d-dimensional polyhedron or polytope (its skeleton), then the resulting graph is at least d-vertex-connected: the removal of any d − 1 vertices leaves a connected subgraph. For instance, for a three-dimensional polyhedron, even if two of its vertices (together with their incident edges) are removed, for any pair of vertices there will still exist a path of vertices and edges connecting the pair.