Hilbert–Speiser theorem

In mathematics, the Hilbert–Speiser theorem is a result on cyclotomic fields, characterising those with a normal integral basis. More generally, it applies to any finite abelian extension of Q, which by the Kronecker–Weber theorem are isomorphic to subfields of cyclotomic fields. Hilbert–Speiser Theorem. A finite abelian extension K/Q has a normal integral basis if and only if it is tamely ramified over Q. Cornelius Greither, Daniel R. Replogle, and Karl Rubin et al. () proved a converse to the Hilbert–Speiser theorem:

Hilbert–Speiser theorem

In mathematics, the Hilbert–Speiser theorem is a result on cyclotomic fields, characterising those with a normal integral basis. More generally, it applies to any finite abelian extension of Q, which by the Kronecker–Weber theorem are isomorphic to subfields of cyclotomic fields. Hilbert–Speiser Theorem. A finite abelian extension K/Q has a normal integral basis if and only if it is tamely ramified over Q. Cornelius Greither, Daniel R. Replogle, and Karl Rubin et al. () proved a converse to the Hilbert–Speiser theorem: